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I. Introduction

In this paper we consider a hazardous inspection model. We are

given a device which operates throughout a number of periods and which

lit each period is subject to failure. Failure of the device is directly

observable . Prior to failure the device will enter a state in which it

is functioning, but in an impaired manner. This state can be detected

only by performing an inspection . Once the machine is known to be in the

impaired state, appropriate action may be taken to prolong the remaining

life of the device. In this respect inspection is valuable . However,

the act of inspecting the device when it is not impaired may itself

cause the device to become impaired . In this respect inspection is

hazardous. This paper deaLs with the determination of inspection policies

which maximize the expected lifetime of the device.

The above model is very appropriate for situations where the cost

of inspection is negligable relative to the cost of failure. One importan t

example is the use of X-rays to detect cancer. Currently there is con-

siderab le controversy as to whether X-rays may themselves cause cancer and,

granting at least their potential for causing cancer, whether or not

they should be employed . (See [3] for a detailed list of references on

this subject.) Another prime example is the inspection of nuclear reactors.

Since the largest single cause of malfunctions is human error [ii], a

fundamental qtestion is do human inspections create more problems than

they solve.

A number of author s have studied inspection models [1), [5) , [61,
( r ] , [8). These author s have all assumed a cost structure for inspection

and repair , and have sought to derive inspection and repair policies which

1
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minimize the overall cost of operation . In none of these papers was

inspection assumed to have any effect (good or bad) on the true state of

the device. Wattanapanom and Shaw [10] consider a hazardous inspection

model in which the device has an exponential failure distribution in the

absence of any inspection . Each inspection either causes ininediate failure

or else increases the failure rate. They derive algorithms for finding

inspection policies which minimize the overall operating cost.

2. The Model

Consider a device whose operation can be classified into one of

three categories: fully functional; functional, but impaired; and failed.

The failed state is directly observable but one can distinguish the partially

functional state from the fully functional state only by performing an

inspection. Inspection is perfect (i.e., the true state is always revealed)

and instantaneous.

The inspection model will be formulated as a Markov decision process

[~J. We let X denote the true state of the device at the start of

period it (before inspection), where the possible states are

True State Description

1 fully functional (OK)

SectiOl’ ~ 
2 undetected partial failure (UP)

3 detected partial failure (DP) 

— !4. failed (F) .

• . • - SPL CIAL
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Let a denote the action taken at t ime n where ihe possible actions
n ,

are

Action Description

0 do not inspect

1 inspect

We make the usual Markov assumption that the future is in some sense

independent of the past. Specifically we assume that

Pr(X
n÷i 

= J~
Xk, ak, k = 1, 2, ..., nJ

= P r(Xn+1 = jIX n, an), j = l , ...,~~~ .

Define

Q
1~
(a) = Pr(Xn = jix = i, an 

= a) 
, 

a = 0, 1; j 1,.. ., 4

We take the one-step transition matrices Q(O) and Q(l) to be as fol1ows~

Q(O) Q(1)

(do not inspect) (inspect)

( ox) (UP) (DP) (F) (OK) (UP) (DP) (F)

(OK) l~% 
a0 0 0 (OK) l-~ 1 

a1 0 o

(UP) 0 l-~ 0 (UP) 0 0 l-(3 ~

(DP) 0 0 l-r r ( DP) 0 0 1-r r

(F) 0 0 o I (F) 0 0 0 1

3
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We assume that o < c x0, a1, ~~~, y <  I and that a1 >a0 and ~~> y

(see below).

Note the following features about the model.

I. Once a device enters a state, it never returns to a lover-numbered

state .

2. Once a device leaves state I, the transition probabilities are the

same regardless of whether or not it is inspected .

3. Once the device enters state 3 or Ii , the decision process is comp leted,

because the future evolution of the device is independent of the actions

taken. (This is also true once the device enters state 2; however,

state 2 is indistinguishable from state 1 to an observer.)

Ii.. The assumption that a1 > means that inspection is m~re hazardous

to a fully functional device than is no inspection .

5. The assumption that ~ > r means that once partial failure has been

detected, measures can be taken which reduce the periodic probability

of failure of the device.

The information available to an observer is whether or not the

system is in one of the states (1, 2), or state 3, or state ~~~, 
and if

in state I or 2, how many periods have elapsed since the last inspection.

(Note that the last inspection must necessarily have indicated the device

to be OK.] Thus we define the following observed states.

~ 

. 
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Observed State Description

-1 device failed

0 detected partial failure

j > I device not failed ; last inspec-
tion OK; last inspection j
periods ago

The observed state transitions also have the Markov property. We let Z

denote the observed state of the device at period it and

P
1~ (a)  = Pr(Z

~÷1 
= jIZn = i, a~ = a) 

, 
a = 0, 1; i,j > -1

Also let

K. = Pr(X . = 21X = 1 a = 1  a = 0  O < k < j )n÷j it ‘ it ‘ n-i-k ‘

L. = Pr(X = lIX = 1  a = 1  a = 0  0< k < j )  j = l  2
j  n-i-i n ~ n ‘ n-i-k ‘ ‘ ‘ ‘

and

N . = K .÷ L
3 3 1

Note that K
J
/N

1 
is the probability that the true state is 2 (UP) given

the observed state is j and U/N
J 

is the probability that the true

state is 1 (OK) given the observed state is j.

S
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Proposition 1.

A. do not inspect

(1, J = —l
i) P 1 .(o) =~ otherwise

r, J = - ~

ii) P
01 (O) = l- r, j = 0

0, otherwise

K
1WN1, J = -l

iii) P
~~ 1

(O) = (L j-i-Ki
( l_

~ ))/ N j  , i = i-i-I,

0, otherwise .

B. inspect

(1, j = —1
i) P

1 1
(l) =~~- (0 , ot herwise

i, 
j = - l

ii) P
01

(l) = l-r, j = 0

0, otherwise

K~WN1, I = -1

K (l-~ )/N., j = 0 i > 1
iii) P. ~(l) =

L /N i = 1
i’ i,

0, otherwise.

6
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• Proof. Parts A .i-ii and B.i-ii are obvious;

• P. (0) = Pr(X = !~ X = 2~Z = i)
i,-l n-i-I ~ n it

= PrfX 1 = ‘i~lx = 2J.Pr(X = 2fZ = I) =

Als o, it is clear that P~1
(o) = 0 for all j ~ -1, i-i-I, so that

+ P1 1÷1(O) 
= 1. This proves part A .iii. To prove part B.iii note

that

P. (l) = Pr(X =~~~~ X = 2~Z = i)
n-i-I ‘ it it

= Pr(X = = 2).Pr[X = 2fZ = i) = ~K./N .
n-i-I it n it 1

Also

P~~Ø(
1)_ ~~(X~~1 = 3, X~~ = 2 ?Z~ = i, a~ = 1)

= Pr(X = 3~X = 2 a = l).PrfX = 2JZ = i
n-i-I ‘ n it it .

= (1-p) K~/N~ .

Since P
1 1

(l) = 0 for all other j except j = 1, the proof is complete. 0

Proposition 2.

A. L~ = (1-a1) ( 1-a0) 
i-I 

j  > I.

7
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B.

i) K . = a1( l-~) 
i - i  

+ a0( 
i-a1) ( l-~ ) 1-2 ‘

~~ 

(
i
~~o) 

k 
, 

>

ii) K1 = a
1( 

l-~ ) i-i 
+ a0( 

1-a 1) [( i-p) ~~~~~~ 
- ( 1-a0) ‘~~ ]/ (a0-~) ,

~ > 1, a0 ~

iii) K1 
= a1( 

1_a
0) 

~~~ + (i-i) %( 1-a1) ( 1-a0) i 2  > ~ a
0 

=

[Note : By convention, the summation in W i is zero when i - 2 <0.1

Proof.

A. U. = Pr(X
fl+k 

= , 0 k I
~ 

1, a~ = 1, ni-k 
0, 0 < k < i)

= ( I~a1)(1-a0)
’
~~.

• B. K . = Pr(X 2 0 < k < iIX I a = 1 a 0 0 < k < i)
n-i-k ~ — it ‘ n-i-k ~

+ 
2=2 

PrtXfl+k 
= 1, 

0 < k < 2, ~~~~ = 2,

£ < j <i IX ~- l  a = 1  a = 0  O < k < i )
• — — it ‘ it ‘ n-i--k ‘ —

= a1(l -~ )~~~ + 

~~~ 

( l-a1) ( l-a0) 2 2  
.

• 
. i-2 1_a k

= a1( 1-p) ÷ a0( 
1-a1) ( l-~ ) 

1-2 

~~~ 
(l_

~
°)

This proves (1) from which (iii) follows directly. To prove (ii), note that

• 8
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K = a
~
( 1-~ ) 

i -I  a
~
( l-a~) ( ~~~ 

i-2 
[1 1 

~~~~~~ ~~~~~ 

~ 1] 

, 
a
~ ~

Multiplying the numerator and denominator of the second term by (1-p)

y ields

~ 
(1~~)

i~ l 
- ( l-a0)~~~

- = a1( 1-p) 
- 

+ a0( 1-a1) ( 1-~~) - ( 1~a0)

from which ( i i )  fol lows d i rec t l y. 0

To al low for the poss ib i l i t y  of a l te rna te  f ai l u r e  modes, competing

risks and the like, we will assume that every period there is a probability

of secondary failure 1-8. We allow the possibility that 8 = 1 in order

to cancel this feature of the model.

It turns out that the parameter 8 acts almost exac tly like an

ord inary discount factor . Clearly, this aspect of the model could have

been incorporated into the transition matrices Q(~) direc tly. However,

our treatment shows the discount-factor-like nature of 8 and keeps the

t r an s i t ion mat r ices  Q(~) more simple .

We now consider the main objective of this paper, the determination

of an inspection policy which yields the maximal expected life of the device .

Let V(s,n) denote the maximal expected remaining time until failure of

the device given the devic e currently is in (observed) state s and the

device is to be destroyed n periods in the future (if it survives that

long). Let V(s) denote the maximal expected remaining time until failure

9



of the device given it is currently in (observed) state s. As is rather

genera-i ly true of dynamic programs, the finite horizon optima l values

V (s,n) converge to the infinite horizon optima l values V(s) as it

approaches infinity [9) . That is

V(s) = u r n  V (s,n) , s — 1 , 0, 1, ... (I)
it -

~~~~~

The r ecurs ive  rel a tion s among the V ’ s are given below .

Proposition 3.

A . Fini te  Hori zon

i) V(s,O) = 0 s = — 1,0,1,...

ii) V (— 1,n) = 0; V(0,n) = ( l— ( b ( 1~r))~’)/ ( l_8( l_r) ) , n = 1, 2,

iii) V (s,n) = 1 + 8 max(K5( l-~) V (O,n- 1)/N8 + 
L
5 V( 

l,n-l)/N5,

(K 5( l -~ ) + L5) V(s+l,
n_ l)/N5) , 

s,n > I

B. Infinite Horizon

i) V(- 1) = 0, v(o) = i/( 1-8( l-y)),

ii) V(s) = 1 + 8 max(K
5(l-~) 

V(0)/N + U8 
V( l ) / N 5,

(K ( 1—p) + U5) V( s÷1)/N ), s > I

10
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~w ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• Proof.

V (O,n) = ~ Pr(reinaining life of device exceeds kidevice
k=O

curren tly in true state )

it- I
= ~~

k=O

= (1 - (8( l-y) )~~)/ ( l  - 8( l-r) )

The formula for V(O) follows directly from the above by taking the l imit

as n approaches infinity.

By the so-called princip le of optimality of dynamic prograi~ iing [2],

V(s,n) = max [1 + 5 ~ P5.(a) V(j, n-l)) . (2 ~
a = 0 ,i j=-l ~

Recalling Proposition 1, the recursive formula for V (s,n) fo11~ws

immediately. The recursive formula for V(s) follows from taking limits

in the above [9 11 .

3. Preliminary Analysis

We begin the analysis of the model by investigating the behavior

of the quantities KJN , and L
i/N ..

11
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Proposition L.

i) I f a
0 
> a~~, then K ./ N . is strictly increasing in i, and

L ./N . and (K i ( 1_t3) + L~)/N~ are strictly decreasing in i.

ii) If a0 a1~, then K~/N ~ , L~/N~, and (K . ( l-~ ) + L .) /N ~ are

constant in i.

• iii) If a0 < a1~3, then K ./N ~ is strictly decreasing in i, and

L~/N~ and (K
~
(l_

~
) + L.)/Ni are strictly increasing in i.

Proof.
K . U. - K. L

/ i i— l i— IK .1N . - K . i/Ni 1  = (K .÷L.) (K. i
.l
~
L
i ~

so K
r/N . is increasing, constant, or decreasing according to whether

K . U . - K . L is positive zero or negative
1 i — i  i— i  i , , ,

K U . - K. U.• i i-i i - I  1

- i-2 1-a k
= ( 1_a

1) ( i-a0) i-2 
{a( l-~) 

i-I 
+ a0( I-a1) ( I.-~ ) ~-2 

~~

, 

(0)

i 2  - 1-3

• 
- ( I-a0) [a1( l-~ ) 

- 

+ a0( 1-a1) (l-~) 
i-3 

~ 
( ) ]

- i-2 1-a k
= ( l_a

1)(  I-a0) 
i-2 (l -~ ) 1-2 

{a1( 1-~~ + a0( 1-a1) 
~~

1-a i-3 1-a k

• 
- a1( 1-a0) - a0( 1-a1) ~~ ~~ 

(
~-~°) }

= (I-a1) (1-a0) 
i-2 (l~~) 

i-2 (a0
_a

1~)

12
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This proves the assertions regard ing K
i
/Ni. The other assertions follow

directly from the formulas

L1/N . = 1 - K~/N. ,

(K i(l~~
) + Li)/Nj = 1 - ~K./N . . 0

Using the above proposition, we can now compare V (s,n) and V(s)

fo r var ious val ues of s.

Theorem I.

i) If > a1~ , then V (s,n) and V(s) are non-increasing in s > 1.

ii) If a0 < a
1~, then V ( s ,n) and V(s)  are non-decreasing in s > 1.

• Proof. (i) For n = 1, V (s,n) is constant for s >0 and therefore

non-increasing. Now using induction assume that V (s, n_I) is non-increasing

in s > 1. The two arguments of the maximization operator in the recursiv e

expression for V (s,n) (Proposition 3) are

K5(l-~) V(0, n-l)/N5 + U5 V (l, 
n_I)/N

5

= (l— ~) V(O, n-I) + L5(V( 
1, n— I) — ( 1—p) V(0,n-I))/N5, (3)

and

(K 5( I-~ ) + U 9) V( s+1, n- l)/N 5 . ( 14)

13
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By Proposition 14, (K (l-~) + L5)/N9 
is decreasing in s and by hypothesis

V (s, n- l) is non- increasing in s~ Therefore (14) is non-increasing.

Again by Proposition 14, L~/N 5 is non- increasing and by Leumia 2 which

follows V (l, n-I) -(l-t3) V(0, n_l) > 0. Thus (3) is also non-increasing

and so V (s, n) is non- increasing in s > 1. Since V(s) = lim V(s,n),

V(s) must be non-increasing in s > 1 also.

The proof of part (ii) is identical except for the use of part (iii)

of Proposition 14 instead of part (i). 0

Uenina 1.

i) V(0,n) = 1 + 5(I-y) V(O, n-I), it > 0.

ii) V(O) = 1 + 8(’-r) V(0).

Proof. These results follow immediately from Proposition 3. 0

Lemma 2 .

V (l,n) > (l-.~) V(0,n) , n~~~O

• Proof . The proof is by induction . For n = 0,1 the result is clearly

true. Now assume the result holds for n-I. By Proposition 3

• V( l,n) ~ 1 + 5(K
1( l-~) V(O,n-l)/N1 

+ U1 V( 1, n-l)/N1)

> 1 + 5(K 1(1-~ ) v(0, n-l)/N1 + L1(l-~) V(O, n- l)/N1)

? I ÷ b(l-~) V(o, n-I)

.? (‘-~
) [1 + b( l-T) V(O , n- i) ]

114
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Thus by Lenina 1,

I.

V (l,n) > (l-~) V(0,n)

Theorem 2.

i) If r < a
1~ and a0 > a1~ , then V(O ,n) > V( 1,n) and V(o) > V( 1).

ii) If r > a1~ , then V(O,n) < V(1,n) and V (O) ~ V(i).

Proof. (i) For n = 1 the result is trivial . Now assume V(0,n-1)

> V(i, n-i). Since a0 > a1~, V(s, n- i) is non-increasing in s > I

by Theorem 1, so via Proposition 3

V( l,n) < I + b(K1( 
l.~) + L1) V(O, 

n_l)/N
1

< 1 + 5(l-a~~) V(O, n-I)

< I + 5(1-)-) V(O, n-i)

Thus by Lemma I, V (l,n) < V(0,n).

(ii) Clearly V(0,n) < V(l, n) holds for n = 1. Now assume

that V(O, n-l) < V(1, n-I). By Proposition 3 and Lenuna I,

15
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V( l,n) > 1 + 5(K1( 1-b) + U
1
) V (0, n— I)

> 1 ÷ ~(l - a1~) V(0, 
n_ i)

> 1 + 8(1 - 

~) 
V(O, n-l) = V(0,n)

This comp letes the proof for the finite-horizon optimal values. The

results regarding the infinite-horizon optima l values follow from

eq uat ion (1) . 0

In the case omitted by Theorem 2, a <a1~ and a0 < a 1~, it can

be shown that neither the inequality V (O,n) > V(1,n) nor the inequality

V(0,n) < V( 1,n) holds in general.

14. Determination of Optimal Inspection Policies

In thi s section we determine the form of the optimal inspection

policies for various ranges of the parameters.

Theorem 3. i) If a0 > a1~ and r < a1~, then the optimal inspection

policy for both the finite and infinite horizon problems is to inspect

every period .

(ii) If a0 < a1~ and ~ > ~~~ then the optimal inspection

policy for both the finite and infinite horizon problems is to never inspect.

16
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Proof. The op t imal  action when the device is in s t a t e  a facing an n

• period horizon is that action which achieves the maximum in Proposition

3. A . iii.  Let

D(s,n) K
5
(l_ ~) V(O, n-I/N5 + U5 

V( l
, 

n- l)/N 5

- (K
~
( l-~) + U5) V( s-i-I, n- 1)/N9

Then when the device is in state s facing a horizon of n periods it

is optimal to inspect if D(s,n) > 0 and not to inspec t if D(s,n) < 0.

When a0 > a1~ and y- < a1~, V (s,n) is non-increasing in s > 0 for all

it by Theorems 1 and 2. Thus D(s,n) > 0 for all s,n > I and it is

optimal to inspect. When a
0 <a

1~ 
and ~~> a

1~ , 
V (s,n) is non-decreasing

in s > 0 for all n by Theorems 1 and 2. Thus D(s,n) < 0 for all

s,n > 1 and the optimal policy is not to inspec t. This completes the

finite horizon proof.

The optimal action when the device is in state s facing an infinite

horizon is the action corresponding to the argument which achieves the

maximum in Proposition 3.B.ii (see [9)). To be more specific, let

D( s) = K ( l-~) V(O)/N ÷ L V( 1)/N

- (K5( I—~) + L5) V( s-i- l)/N

Then when in state s it is optimal Co inspect if D(s) > 0 and not to

inspec t if D(s) < 0. The remainder of the proof is identical to the

f inite hor izon case. 0

The lemma which follows provides the basis for determining the form

of optima l inspection policy when a0 > a1~ and y > a1~ .

17
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Lemma 5. If a
0 > a1~ and y > cr~~ , then for all it = 1, 2,

i) D(s,n) and D(s) are non-decreasing in

ii) D( s+l, n- I) N5÷1 
— ( 1-as) D( s, n- I) N~ 

> 0, (ii > I),

iii) a0( l—~ ) V ( 0, n_ I )  + ( 1—a0) V( I, it— I) - ( l—a1~ ) V( 2, n_ i) > 0.

Proof. The proof is by induction on n~ The inequalities (ii) and (iii)

are included only because they are necessary in the proof of part (i). Let

G( n) = a0( l-~) V( 0, n-I) + (1—a0) V( 
I, n-I) - ( l-a113) V( 2, n_ I)

n = 1, 2, ... ,
• and

H( s,n) = D( s-i-I, n-i) N9~ 1 
- (i_cr0) D( a, 

n_ I) N
~

It is easy to verify that D(s,i) = D(s,2) = 0 for s = 1, 2 Also,

G( 1) = 0 and G(2) = (cr1-a0)~ 
> 0. Finally, note that }1( s,2) = 0

[H(s,l) is undefined]. Thus the finite-horizon portion of the lemma

holds for n = 1, 2. Now assume the 1e~~~a holds for it = N-l, where

N > 3 .  Let

s*(n) = min(s � l:D(s,n) .? 0)

where s*(n) = +~ if D(s,n) < 0 for all s. Since D(s, N-i) is

assumed to be non-decreasing in a, D(s, N-I) is non-negative if and

only it s > s*(N_ l). Thus

18
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V(s , N-l) = 1 + 5(K5( 
I_p) ÷ U5) V(s+I, 

N~2)/N5 ,

for  s < s*(N_l) 
, (5)

and

V( s,N_l) = I + 8K~( 
l_
~) V(O, N-2)/N5

+ SL V( 1, N-2)/N , fo r s > s*(N_1)

In the remainder of the proof we will make use of the following easily

verified formulas for K U and N without mention:
s~ s~ 5

= (l-~)K5 + 
a0L

L5 1  = (l-a0)L5 , (6)

• N = (l-~)K +Ls-i- i 5 S

Case 1: s*(N_l) = 1: In this case, by equations (5) and Lemma I

D( s,N) = ~ K~( l-~) [I + ~( i-i) V( 0, N—2))

+ L
~
[ 1 + 5K1( l-~) V(o, N-2)/N1 + 

5L
1 V( 1, N-2)/N11

- (K5( l.~3) + U5) [1 + 5K541( l-~~~) V(O , N_2)/N5~ 1

+ 8L5÷1 v(l, N_2)/N5~ 1]} /N~ ,

= 8( i-~ ) (~-r) V(0, 
N_2) KS/NS

- 5(a1-a0) (V( 1,N-2) - (l_ ~) v(0,N_2)JL5/N9 . (7)

19
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Recalling Lemma 2, Proposition L~ and tAte assumptions that 
~ > r and

a
1 

> a0 we see that D(s,N) is non-decreasing in s.

Case 2: s~(N_1) > I: In this case we first show that D(~.,N) is non-

decreasing in the ranges [I , s * ( N_ I )  - I) and (s*(N_l) - 1, os) .

I < s < s*(N _ 1)  - I: In this range of s, by equations (5) and Lemma 1

D( s,N) = (K( 1-~) (1 + 5( l-r) V(O, N-2)J ~ L5[ 1 + 5(K1( l-~ )+U1) V(
2,N-2)/N1J

- (K
~
( l-~) + L5) (1 + 8(K5 1 ( l-~ ) + U9 1 ) V( s÷2,

= 5( I-y)( l-~) V(0,N-2)K5/N 5 + 5( 1-a 1~ ) v(2 , N -2) L5/N 5

- 8V( s+2 N_ 2 )  N JN, s-+-~
_ 

5

= SD( s+1, N- I) N5~ 1/N5 
- 8[( i-~) V(0, N_2) K~ 1

/N
3 ÷ V( i ,N- 2)L 5 1 /N 5]

+ 5(i-i)(l-~) v(O,N-2) K/N 5 + 5(I-a~~) V (2, N~2) L5/N 5 

•

= SD( s-i- 1, N_ l)N 5+i /N~ + ~(l-~)(~ -r) V (O, N-2) K5/N 5

- 8G(N-1) U N  . (8)

Since N
8 1/N5 = 1 

- ~K5/N9, this quantity is decreasing when a0 >

and r > a1~~. Also, D(s+1, N- I) is non-decreasing by the inductive 
•

20
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assumption and in the range s ~ (I, s*(N_1) - 1) it is negative. Thus

bD(s÷1, N_l)N 5 1 /N 5 is non-decreasing . Since by the inductive assumption

C (N-l) > 0, the other two terms in the above expression for D(s,N) are

also non-decreasing, D(s,N) is non-decreasing in this range of s.

s*(N_i) - 1 < s < co: In this range of s, by equations (5) and Lemma I

D( s,N) = {K5( 1-~3) [I 
+ b( l..~) V(0, N_ 2)]

÷ L5[I ÷ 5(K1
(l_ ~) + L

1
) V (2 , N-2 ) /N

1
]

- (K 5
(l_ ~) + U5) [1 

+ 5K 5~ 1(I -~ ) v(0 , N_ 2) /N 5~ 1

+ 8L5 1  V( 
I, N-2)/N5 ~

] } /N ,

= 6( 1_y) (1-p) v(o , N_ 2)K 5/N~ + 
5(1 - a1~) V(2, N-2)L5/N5

- 8( l-~ ) V(O , N- 2)K 5~ 1/N 5 - SV( 1, N- 2)U 5÷1/N 5

= 5( ’-~
)(

~ -r) V(0 , N-2)K5/N5 - 8 G ( N _ l ) L 5/N~ . (9)

Again by the inductive assumption G(N-l) > 0, so D(s,N) is non-decreasing

in this range of s. To show that D(s,N) is non-decreasing throughout

- [1,co) all that remains to prove is that D(s*(N_l) I, N) - D(s*(N_ l)_2,N) > 0.

Using equations (8) and (9) and denoting s*(N_I) for the time being simp ly

by s*,
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D( s*_ l , N) - D(s*_2, N)

= b( l-~ ) ( ~~-~ ) V(0 , N -2)K 5~ _ 1/N 5~ _ 1  - SG(N- i)L5~_ 1/N 5~~ 1

- bD( s*~ 1, N~ l)N 5~ 1/N 5~~ 2 - 5( l-~ )(~~-y) V (O , N- 2)K 5~i-~~ /N 5~~ 2

~ SG (N -  l)L ~~~ 2/N~~~ 2

= b( I-~ ) ( ~~-r) V(0, N-2) [K 5~~ 1
/N 5~~1 

- K
S~~~~~

N
S~~~2

]

SG (N- l )  (L 5~~~~ N 5+ 2  - L
S~~~1

/N
S~~~1J - SD( s*_ l , N

~~~
l)N

5~~ 1
/N

~~~~~~2

Since K / N 5 
is increasing and U/N is decreasing the first two terms

in the above expression are non-negative. Also, by the definition of

s* = s*( N.- I) , D(s *~ l, N -i )  < 0. Thus D(s*_ l, N) - D(s*.2, N) > 0. Next

we show that H(s,N) > 0 for all s.

Case I: s*(N_ 2) = 1: Using equation (7) and simplifying ,

H( s,N) = 5( l-~~~) (~ -r) 
V(O, N4) (K5÷1 

- ( l-a0) K J  ~ 
0

by Lemma 14 (which follows this proof).

Case 2: s*(N_2) > 1, s > s*(N_2) - I: In this case, using equation (9)

and simplifying,

H(s,N) = b(l-~)(~ -r) v(o , N-3) [K 5~ 1 
- (1-cx0)K5J ~ 0

by Lemma 14.
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• Case :~ s~(N_ 2) > 1, s÷I = s*(N_2) - I: Using equations (8) and (9) and

simp li fying

R (s ,N) = b ( l~13)(~ -T) v(0 , N -3) [K 5~ 1 - ( l-a0)K 5 ]

- 5( 1-cr
0) 

D( s+l, N_ 2) N 5÷1 -

The first term in the above is non-negative by Lemma 14- . The second term

is non-positive because s+1 < s*(N_2) and so D(s+I, N_2) < 0.

Case 14-: s÷l < s*(N-2) - 1: In this case, using equation (8) and s imp l i fying,

H(s,N) = 5(1-~ )(~ -y) V(o, N-3) [K5~1 
- (I_a0)K5] ÷ 

SH(s+l, N_I)

Again the first term is non-negative b~ Lemma 4. The second term is

non-negative by the inductive hypothesis. Hence we have shown that

H(s,N) > 0 for all s.

Next we show that G(N) > 0.

• Case 1: s*(N_ l) < 2: By Proposition 3.A .iii,

V (i, N-l) > I ÷ 5K1(l-~) v(o, N-2)/N1 + 8L
1 

V( l, N-2)/N 1 
-

Combining this inequality with the expressions for V(0, N_2) and

V (2, N-2) given by Lemma I and equations (5),
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G(N) > a 0( l -~~) [1 + b( l-r) V(O , N -2) ]

- ~- ( l-a~) 1 + 5a1( 1-p) v(o , N _ 2 )  ÷ b( I_ a
1) V( 1, N—2) J ( 10)

- ( l-a1~ ) [1 + 5K2( l-~ ) v (o , N - 2)/N 2 + bL2 V( I , N- 2)/N 2]

> (a
1-a0)~ + SV ( 0, N -2) [a0(l -~3) ( l -r )  + a1( l-~ ) (I -a0) -

+ bV( 1, N _ 2) [( l-a~) ( 1_a
1) - L2]

> (a
1-a0)~ + 5( l-~ ) [a 1~ - 

~~~ 
V(O , N-2) . (11)

Since a
1 > a0 > 0 and ~ > -r > 0, G(N) > 0.

Case 2: s*(N_ 1) > 2. In this case

G(N) = a0( 1-~ ) [1 + 8(l-r) V (0, N-2)]

+ ( I-a0) [ I  + 5(K 1( I-~ ) + U 1) V(2 , N -2) /N 1]

- ( l-a~~) E l  + 5(K2(l-~) + L2) V(3 , N- 2)/N 2 ]

= a0( l-~ ) ( 1  + 5( l-r) V(0 , N_2) ]

÷ ( I—a0) [ I  + 8a~( l-~ ) v(o , N— 2) + 5( 1_a
1) v( 1, N_ 2) ]

- (I_a1~) [1 + 5K2( l-~ ) V(O , N-2) /N 2 + 5L2 V( 1, N-2) /N 2]

+ ( I_a
0) [1 ÷ SN2 v(2, N-2) - 1

- 
~~~~ 

1—~) V(o, N_2) - 8( 1-a1) V( 1, N-2)]

- (1- a1~ ) E l  + SN
3 
V(3, N-2)/N2 

- 1

- 5K2( 1-p) V(O , N- 2 ) / N 2 - 5L2 V( I ,N_ 2)/N 2]
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Now the first three terms in the above are the same as those in equation

( 10) , which simp l i f ies  to ( Ii) . Therefore

G(N) 
~ 
(a1-a0)t3 + 5 (1-13) [a1~ - 

~~~~~~~ 

v(o, N-2) + SH(1,N) -

Since we have proved above that H( l,N) > 0, G(N) > 0.

It remains only to show that 0(s) is non-decreasing . By equation

( 1)

D(s) = lint D(s,n) -

it —3 co

Since each D(s,n) is non-decreasing in s, D(s) must be non-decreasing

also. C

Lemma 14-. If a > a ~ then K > ( i-a )K0 1 s-i-i— O s

Proof. Case 1: cr0 > ~ : Here

K
1- (l-a0)K = (a

0-~ )K 
+ a

0
L > 0

Case 2: a0 < ~~: K
1 

- (l-a0)K 
= a0N - = N [a0 - ~K /N]. The

sign of the above expression is determined by that of a0 - ~K /N and

since this quantity is decreasing all we have to show is that

lint K/N < a0/~S —*~~~

From Proposition 2,
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K5/N 5 

(a
0-13) 

a1~~~~~) + a0( 1
~

L
~l ) E (  - 11

(a0-t3) a1(.f.~
_) + ~~ l-~~ ) -

~~~
) - 1] ( 1—a 1) (%-13)

Thus

u r n  K/N =

• • S-4 co

Theorem 14. If a0 > a1~ and r > a1~ then

i) if the device is in state s facing an n-period horizon, it is

optimal to inspect if and only if s > s*(n),

ii) if the device is in state s fac ing an i n f in i t e  horizon , it is

opt imal  to inspec t if and only if s > s*(co) - - m i n ( s : D ( s )  > Oj.

Proof. This theorem is an immediate consequence of Lemma 3. 0

•~ 
-1
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The form of rht optima l inspc~ t i on  pol icy has been analyzed in

every case except a0 -. 
~ 13 and r• K ~113. In this case it turns out

that D(s,n) crosses zero at most once and from above (s varying ,

n fixed) and so it is optima l to inspect in state s unless s is

larger than some number z*(n).

Lemma 5. If a
0 < a113 and y K th en as s increases D(s,n) and

- 
D(s) cross zero at ntost once and from above .

Proof.

D(s,n) = [V(0 ,n_ 1) - V(s-t- l, n_ l)](1-~ )K5/N 5

+ [V( l, n — I)  — V(s+1, n_1)]L /N5 . (12)

By Theorem l.ii, V(s+1, n_i) is non-decreasing in s and by Proposition

4.iii K/N is decreasing and L/N is increasing. Consider the

interval of s for which V (o, n- I) > V(s+1, n-I). In this range

V(O, n-I) - V(s+l, n-I) is non-negative and is non-increasing. Thus in

this range the first term in (12) is non-increasing. Al so V (l, n_ I) - V(s+l)

is non-positive and non- increasing, so the second term is also non- increasing~

Thus D(s,n) is non-increasing for s in this range. For the interval of

S for which V(O, n_I) < V( s-i- 1, n _ i ) ,  both terms in ( 12) are negative and

thus D(s, n-l) < 0. Thus D(s,n) crosses zero at most once and from

above, as desired . Since D(s) = u r n  D(s,n) it is easy to verify that
n_ 3~~

D(s) must also have this property. 0 

——--
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Let

z*(n) = max (s:D(s,n) > 0)

- 

and

• Z*(oo) = tn ax( s:D( s) > 0)

where we take the maximum over an empty set to be ..
~~~~.

Theorem 5. If a < a1~ and y K a1~ then if the device is in state s

facing an n-period horizon, it is optimal to inspec t if and only if

s < z*(n), (i<n < o o ) .

Proof: Follows immediately from Lemma 5. 0

5. Conclusions

The form of the optimal policy has been shown to depend in a

simple way upon r, a0, and a1~. The quantities a0 and r have

-obvious interpretations; a1~ is the probability that given the device is

currently in observed state I (i.e., last inspection one period ago;

results OK) that the device will be failed at the start of the next period.

When r < crJ~~, observed state 0 seems intuitively to be a better state to

be in than state 1, and conversely. The relation between a0 and

has been shown to determine whether or not the conditional probabilities

and L
5/N8 

are increasing or decreasing. With these facts noted,

the forms of the optima l policy in the various cases are intuitively sensible.

28
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The optimal policy when a
0 

<-~ CX 113 and y K a113 perhaps deserves

some special discussion because of its seemingly odd nature . When the

device is in observed state s, inspection may seem intuitivel y

des i rab le  since if the true state is 2, then in every period in

which the partial failure remains undetected there is a larger probability

of complete failure . When r > a1~ this preference for inspection indeed

should hold for s = 1. However, when cx0 K a1~, U5/N5 is increasing,

so tha t as s inc reases the p robab i l i ty  that the device  is in true state

1 ( OK) increases also. Of course when the true state is 1, inspection

is not desirable. Thus it seems reasonab1~ that once the observed state s

is larger than some number , L5/N 8 is sufficiently large to make not

inspecting opt imal. Finally we should note that when a0 < a 1~ and

r < a1~ the optimal policy for a device starting out in observed state

s < z*(oo) will be to always inspec t, and so the device will never in

the future reach any observed state greater than 1. However if the device

starts out in observed state s > Z*(oo) , then the optimal policy will be to

never inspect.

29

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~ 
- -- —~~ ~~~~~~~~~~~~~~~~~ -• • - - - -~~~~~ •



References

1. Girshick , M.A ., and H. Ruh in, “A Bayes A pproach to a Quality Control
Model,” Ann. Math. Stat ., Vol . ~~‘, 1952, pp. 1l~- l25.

2. Hillier, P.S. and G.J . Lieberman , Operations Research, Holden-Day ,
San Francisco , 19714, pp . 252-2 14.

5. Laws, P.W., X_Rays: More Harm Than Good?, Rodale Press, Emmaus,
Pennsy lvania, 1977 , pp . 2140-2147.

• 
~~~. Ross, S.M., App lied Probability Models with Optimization A pplications ,

Ho lden-Day , San Francisco , 1970, pp. 119- 177.

5. Ross, S.M., “Quality Control Under Markovian Deterioration ,” Management
Science , Vol . j~~, 197 1, pp. 6914-706.

6. Rosenfield, D., “Markovian Deterioration with Uncertain Information,”
Operations Research L Vol. 214, 1976, pp. 1141-155.

7. Rosenfield, D., “Markovian Deterioration with Uncertain Information --
A More General Model,” Naval Res. Log., Qtly., Vol . ~~~~~~, l91~ ,
pp. 389-1405.

8. Smaliwood, R.D., and E.J. Sondik, “The Optimal Control of Partially
Observable Markov Processes Over a Finite Horizon,” Operations
Research , Vol. 21, 1973, pp. 1071- 1088.

. Veinott , A .F., “Discrete Dynamic Programming with Sensitive Discount
Optimality Criteria ,” Ann. Math. Stat ., Vol . ~O, 1969 , pp. 1’ ~~-1’ -~O.

10. Wattanapanom, N., and L. Shaw, “Optimal Inspection Schedules for
Failure Detection When Tests Hasten Failures,” Technical Report
No. POLY EE/EP 76-OO i., Polytechnic Institute o1~ New York, Bro okl yn ,
New York, l9(’~.

11. Reactor Safety Study: Art Assessment of Accident Risks in U.S.
Coimnerical Nuclear Power Plants, U.S. Atomic Energy Commission ,
WASH- 11400, August  1~ / 14 .

50

— • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i —--— -~ 1~ .~ -~~- --_ - . — -_-- --- - --- —-- - ----- ‘-_ —-



~~~~~‘~~— — - — —  ——=---~ j— -—------—~~~~~~~ -- —•- —--~-- — ---— — —•-

UNCLASSIFIED
SECURITY CLASS IFICATION O F THIS PA GE (Wh.o Dot. Ent•rsd)

D~~DA~~T n~~rII~~c~lTATInk~ DA~~~ 
READ INSTRUCTIONS

‘ “ “#‘—“-“ ‘“ ‘ ‘~~“I’ ~~ I~~ ~.OI4E COMPLETING FORM
1~ REPORY N UM B E R  2. GOVT ACCESSION dO. 3 R(CI P ,C P 4 T S  CATALOG NUMB ER

4 TITLe : (and SubWl.) I T Y P E  C~F NE PORt  S PER IOD COVERED

A HAZARDOUS INS FEC TI ON MODEL echn ic a I Ke~~~ t7J
S ~c~ ro~wii a ORG. JILEPOII NUMBER

7 AUTHO N(a) 
-- S. CONTRAC t O~ GRANT NUMSER(.)

~~~~~~~~~~~~~~~~~~~ j~ ~~~~~l14-75 - C 056~J

S. PERFORM ING ORGAN IZAT ION N AM E  AND ADDRESS 10. PROGRA M ELEMENT. PROJECT , TASK

Department of Operations Research and Dept. 
AREA S WO RK UNIT NUMBERS

of Statistics -- Stanford University , (NR-0142-002) - _________

Stanford,_ California_914305 ____________________________
II . CONTROLLING OFIICE N A M E  AND AOOAESS 12. REPORT DATE

Statistics and Probability Program Code 1436 Oc —24~--1~f1f
Office of Naval Research I s.  NUM B E R OF PAGES

Arlington, Virginia 22217 50 ~
-r--

lb M ONITORING AGENCY N A M E  & ADDRESS (g1 dtIl~,anI 1,00, Controllln4 OtlOc.) II .  SECURITY CLAS - •~ r.p o Pf )

Unclassified

IS.. OECLASSIPICAT ION/OOWNGRAO I NG
SCHEDULE

14. DISTR IsU rION STATEMENT (ci thia Ropo.t)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED.

17. DIsTRI B uTIoN STATEMENT (ol A . .b.tr.ct ant.,. dln Stock 20. II dUf.r.nt I,~~, R.,o,t) 
-

IS. SUPPL EM EN T A R Y  NOT ES

IS. KEY WORDS (Conttnu. On t•Vl~i~ Ild O it n.c...0 ,7 .,d id.ntSly by block ni~ ,b., )

RELIABILITY MARKOV DECISION PROCESS
INSPECTION MODEL DYNAMIC PROGRAMMING
HAZARDOUS INSPECTION PARTIALLY OBSERVABLE PROCESS

DETERIORATING PROCESS

20. AeST~~~~ T (Continue an s•..ri• aid. it n.c.. . y aid SdanuI~~’ by block m b.r) g.~ •

In ;his paper ~~~consider~a hazardous inspection model. ~1e—e-re given a
device which operates throughout a number of periods and which in each period~ ~~
,~e subject to failure. Failure of the device is directly observable. Prior
to failure the device will enter a state in which it is functioning, but in an
impaired manner. This state can be detected only by performing an inspection.
Once the machine is known to be in the impaired state, appropriate action may
be taken to prolong the remaining life of the device. In this respect inspec-

tion is valuable. However the act of inspecting the device when it is not
impaired may itself cause the device to become impared . In this respec t
inspection is hazardous. This paper deals with the determination of inspec-

tion 2olicies which maximize the expected lifetime of the device.

DD , ~:“;, 1413 EDITION OF I NOV 51 1 OSS0L LYE
5/N OIOS .014 .56OI UNCLASSIFIED

SECURITY CLAUIPICATION OP ?NI$ PAG (~~~ai

33 ~~ / •T -

H~U r t  - — ~~~-~
- • - - - --F ~~~~~~~~~~~~~~~~ •

~~~ 
- 


